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Abstract 

In this paper, we discuss the role of topology as a predictor for the conceptualization of 

dynamically changing spatial configurations (referred to as movement patterns). We define 

meaningful units of movement patterns as paths through a topologically defined conceptual 

neighborhood graph. Topology plays a central role in formal approaches to human cognition and 

in predicting cognitive similarity ratings—although primarily for static spatial configurations. 

Formal specifications of the role of topology for characterizing movement patterns do exist, yet 

there is paucity of behavioral validation. To bridge this gap, we conducted an experiment based 

on the grouping paradigm to assess factors that underlie conceptualizations of movement 

patterns. The experiment was designed such that paths through the conceptual neighborhood 

graph were distinguished by topologically differentiated ending relations. We believe topology 

can make an important contribution in explaining movement conceptualizations. One recently 

formulated topology-based contribution is the endpoint hypothesis, asserting that a cognitive 

focus is placed on event ending relations. We discuss the results of our experiment in relation to 

previous experiments targeted toward a framework for modeling the cognitive conceptualization 

of dynamically changing spatial relations. 
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Topologically Characterized Movement Patterns: A Cognitive Assessment  

 

Introduction 

Understanding time and movement patterns has developed into a key research area in 

several sciences. In spatial sciences, for example, driven by the necessity to extend current 

spatial technology to be able to handle temporal aspect (Laube, Imfeld, & Weibel, 2005; 

Adrienko, Adrienko, Dykes, Fabrikant, & Wachowicz, 2008; Stewart Hornsby & Cole, 2007; 

Peuquet & Duan, 1995; Galton, 2004; Goodchild, 2004; Worboys, 2005), several approaches 

have been suggested to integrate space and time into formal frameworks. The focus on events 

and movement patterns—compared to earlier models only representing snapshots in time—can 

also be explained by a strong focus in spatial sciences on cognitive and linguistic aspects of 

geographic space and endeavors to integrate these aspects into formal characterizations (Mark & 

Frank, 1991). Time is an essential aspect of how we understand spatial environments as it is 

intimately linked to causation (Wolff, 2008).  

 Paralleling these developments, research on temporal aspects in other disciplines, such as 

philosophy (Casati & Varzi, 1996; Casati & Varzi, 2008) and particularly cognitive psychology 

(Zacks & Tversky, 2001; Hard, Tversky, & Lang, 2006; Shipley & Zacks, 2008; Wolff, 2008) 

has increased and led to a better cognitive understanding of: a) event boundaries, that is, how a 

potentially continuous stream of information is segmented into meaningful units (Newtson, 

1976; Zacks, Tversky, & Iyer, 2001; Shipley & Maguire, 2008); b) factors that influence setting 

event boundaries (Hard et al., 2006; Zacks et al., 2001); c) causal relationships that explain 

underlying processes and contribute to the conceptualization of events (Wolff, 2008); d) specific 
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parts/aspects of events, such as their endpoints (Regier & Zheng, 2007); and, e) the linguistic 

aspects of events (Folli & Harley, 2006); to name just a few. 

 While cognitive aspects of static spatial relations have been researched in the spatial 

sciences with a special focus on requirements of spatial information technology such as the 

formal characterization of spatial relations and their constituents (Mark & Egenhofer, 1994b; Xu, 

2007; Nedas, Egenhofer, & Wilmsen, 2007; Riedemann, 2005; Matsakis & Sztandera, 2002), 

movement patterns have not yet been given the same attention, at least not from a cognitive 

behavioral perspective. We do not lack suggestions for conceptual temporal models (Peuquet, 

1994; Mennis, Peuquet, & Qian, 2000; Galton, 2004; Hornsby & Egenhofer, 2000). We lack, 

however, behavioral research on movement patterns on the geographic scale and an 

understanding of how formal characterizations of movement patterns relate to cognitive 

conceptualizations thereof (Worboys & Duckham, 2006; see Lu and Harter 2006 and Klippel et 

al. 2008 for work in this area). This research is necessary to keep up with the greatly increasing 

number of investigations on formal aspects of spatio-temporal characterizations and also to 

advance the cognitive-theoretical basis of geographic information science (GIScience) (Renz, 

2002; Montello & Freundschuh, 2004; Schuurman, 2006). The research question addressed in 

this paper can be condensed to: Are qualitative calculi cognitively adequate to model cognitive 

conceptualizations of movement patterns? 

The remainder of this paper is structured as follows: The next Section provides a brief 

overview of research on the conceptualization of movement patterns as well as a discussion of 

the research literature on the role of topology for static spatial relations. The following Section 

details the experiments we conducted to evaluate aspects of conceptualizing movement patterns: 
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First, we discuss the results of previous experiments (Klippel et al., 2008) within the context of 

this paper; second, we describe a follow up experiment in which we tackled the question of 

whether a modification of the ending relation of movement pattern, distinguished by different 

topological relations, can be the basis for modeling the cognitive conceptualization of movement 

patterns. In other words, we evaluated a variation of the endpoint hypothesis postulated by 

Regier (2007) for (spatial) movement patterns. The following Section discusses our experimental 

results and the last Section places these results into a broader scientific context and offers 

conclusions and suggestions for future research. 

 

Background 

Conceptualization of Geographic Scale Movement Patterns 

Research on the cognitive conceptualization of movement patterns has a long history 

within several sciences as a subcomponent of research on events (for an overview see Casati 

& Varzi, 1996; Shipley & Zacks, 2008; Zacks & Tversky, 2001). The cognitive-behavioral basis 

of movement patterns on the geographic scale is addressed in some of these research approaches, 

such as work on the linguistic description of causation by Wolff and collaborators (Song & 

Wolff, 2005; Wolff, 2008). Within spatial sciences, however, behavioral research on spatio-

temporal movement patterns is still an exception, partially due to the complex nature of many 

geographic scale phenomena (Yuan, 2001). Despite the lack of behavioral research, the spatial 

sciences have contributed many detailed models of spatio-temporal information. Examples 

include the extensive work by Peuquet and collaborators (Peuquet, 2001; Mennis et al., 2000), 

the conceptual work on complex events by Yuan and colleagues (Yuan, 2001; McIntosh & Yuan, 
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2005), and others (Worboys, 2005; Hornsby & Egenhofer, 2000; Laube et al., 2005). Most of 

these approaches take into account aspects of human cognition to model spatio-temporal 

information. The cognitive focus of these models is, however, on general cognitive principles of 

spatio-temporal knowledge organization; they are not primarily built on behavioral research 

conducted within geography or checked against behavioral data. 

 

Topology 

One important characteristic of pairs of dynamic, spatially extended entities is that they 

can change their topological relations gradually, a concept discussed as conceptual 

neighborhoods (Freksa, 1992; Egenhofer & Al-Taha, 1992, see Figure 1). A geographic example 

of interpreting Figure 1 would be a hurricane crossing a peninsula. The idea of conceptual 

neighborhoods is based on Allen’s temporal intervals (Allen, 1983) and has been extended to 

spatial relations employing the two most prominent frameworks for characterizing topological 

information in spatial sciences, that is, the region connection calculus (RCC) (Randell, Cui, & 

Cohn, 1992), and the 9-Intersection model (Egenhofer & Franzosa, 1991). 

For example, RCC (following Galton, 2000) is build on a mereotopological connection 

relation ܥ and ܥሺݔ,  is both ܥ Relation .ݕ is connected to region ݔ ሻ meaning that regionݕ

reflexive and symmetric. A part relation ܲ can be defined in terms of ܥ as follows: ܲሺݔ, ሻݕ ؠ

,ݖሺܥሺݖ∀ ሻݔ ՜ ,ݖሺܥ  is ݔ as long as anything connected to ݕ is a part of ݔ ሻሻ. Meaning thatݔ

connected to ݕ. By defining two further relations, a proper part relation, ܲܲሺݔ, ሻݕ ؠ ܲሺݔ, ሻݕ ר

¬ܲሺݕ, ,ݔሻ and the overlap relation, ܱሺݔ ሻݕ ؠ ,ݖሺܲሺݖ ሻݔ ר ܲሺݖ,  ሻሻ, the eight relations betweenݕ

spatially extended entities (see Figure 1) can be formally characterized using the connection 
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relation as a primitive. The abbreviations for these relations are DC (disconnected), EC 

(externally connected), PO (partial overlap), EQ (coincides), TPP (tangential proper part), NTPP 

(non-tangential proper part), TPPi (tangential proper part inverse), and NTPPi (non-tangential 

proper part inverse). 

This formal, qualitative characterization—if used to model paths through the conceptual 

neighborhood graph—can underlie scenarios as diverse as the path of a hurricane across a 

peninsula, or a lake extending its borders and thereby ‘swallowing’ a house on its shores, or a 

terrorist boat entering a harbor (Stewart Hornsby & Cole, 2007; Egenhofer & Al-Taha, 1992; 

Worboys & Duckham, 2006). 

 

Figure 1 about here 

 

While recent research has investigated the conceptualization of movement patterns 

(events) (e.g., Zacks et al., 2001) and how perceptual characteristics of movement patterns may 

induce the conceptualization of their boundaries, a contrasting approach is to start with the 

presumption (hypothesis) that movement pattern boundaries are based on formal 

characterizations, as introduced above (see also, Knauff, Rauh, & Renz, 1997; Knauff, Strube, 

Jola, Rauh, & Schlieder, 2004; Renz, 2002). Behavioral studies are employed as a means of 

validation by which the cognitive adequacy of formal characterizations of movement patterns is 

assessed.  

An example for this approach is provided by Lu and Harter (2006), using behavioral 

research to address the question of whether all of Allen’s intervals (Allen, 1983) are equally 



Topologically Characterized Movement 
 

salient in the cognitive conceptualization of movement patterns (in their experiments, fish 

swimming in a tank). Specifically, their results indicate that relations that describe some kind of 

overlap (START, DURING, FINISHES, EQUAL) are distinguished from those relations that do 

not (BEFORE, MEET). Lu and colleagues interpret these results as a challenge to the hypothesis 

by Regier (2007) that perception and conceptualization of events (movement patterns) is 

endpoint focused (i.e., that the human cognitive system pays more attention to the endpoints of 

events rather than, for example, the start points).  

The endpoint hypothesis is of central importance to the research reported here on the 

conceptualization of movement patterns, too. We will be examining the saliency of topologically 

distinguished endpoints of movement patterns (see Figure 1). 

Assumptions of super-classes of topological relations in the characterization of 

movement patterns are also made in formal approaches. A recent proposal in the spatio-temporal 

domain by Camara and Jungert (2007) groups the eight topological relations between two 

spatially extended entities (cf. Figure 1) into two categories: distance and proximity. Their 

grouping does not correspond to the findings of Lu and Harter (2006). Camara and Jungert 

(2007) subsume all but the topological relation disconnected (DC) into the proximity category. 

While they provide arguments for their categorization, this example stresses the need for 

cognitive-behavioral validation of the relation between formal and cognitive conceptualizations. 

Our own behavioral research (Klippel et al., 2008) involving two simple and spatially 

extended entities has shown that the role of topology in characterizing movement patterns from a 

cognitive perspective is less clear than in the case of static spatial relations. While Mark and 

Egenhofer (e.g., Mark & Egenhofer, 1994a, Mark & Egenhofer, 1994b, and Renz, 2002) found 
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that topological equivalent classes are at least not separated by participants similarity ratings, we 

did not find the same clarity in the case of topologically distinguished dynamic patterns. It is 

important to note, however, that our previous research did not target ending (or start) relations, 

but paths through a conceptual neighborhood graph distinguished by identity and size 

differences. We regard the focus on ending relations an essential gap in our knowledge on how 

topological relations might be able to contribute to a formal characterization of cognitive 

conceptualizations of movement patterns.  

 

Category construction 

When people encounter sets of new or known entities (or movement patterns / events), 

they are able to categorize them spontaneously into groups. Given the continuous stream of 

information people encounter, categorization is an efficient way to reduce the amount of 

information a cognitive system has to deal with, as it establishes equivalent classes (or 

categories). Entities within a category are treated as similar to one another, but different from 

entities in other categories. Directional information, one of the core aspects of spatial knowledge 

about moving entities, is a geographic example (Golledge, Marsh, & Battersby, 2008). While a 

digital compass allows for the differentiation of an unlimited number of directions or direction 

changes (e.g., 36.239 degrees), humans naturally divide directional information into much 

coarser categories. From an egocentric perspective, a person might refer to their surrounding 

space as: front, left, right, and back. From the perspective of characterizing movement patterns 

that occur during wayfinding, a person might distinguish among straight, bear [left,right], left, 

right, or sharp [left,right] (Klippel & Montello, 2007; Vorwerg, 2003). 
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A distinction is made between the case where participants learn category structures, that 

is, placing entities into predefined categories through feedback, and the case where participants 

are asked to spontaneously divide a given set of entities into groups without feedback. Given the 

omnipresence of categorization, feedback is regarded as an artificial influence (Milton & Wills, 

2004). Several studies have excluded feedback by allowing participants to categorize presented 

entities in a way they think is most natural (Pothos & Chater, 2002; Milton & Wills, 2004) 

without providing any a priori information on the number or characteristics of the groupings. The 

key element of this approach is that no feedback is provided to the participants concerning the 

agreement of their groupings to previously established category structures. Several names have 

been used for this approach, including unsupervised human categorization (Pothos & Chater, 

2002), free sorting (Billman & Davies, 2005), category construction (Medin, Wattenmaker, & 

Hampson, 1987), and free classification (Handel & Imai, 1972). We will refer to this approach 

(that we employ here) as conceptualization or category construction. 

 

Event Experiments 

To shed more light on the question to which extent topology can be used as a predictor 

for conceptual knowledge expressed through similarity ratings, we first re-evaluated data from 

previous experiments. We did so with this new question in mind to focus on the strategies 

participants employed during the creation of similarity ratings. Subsequently, we conducted a 

new experiment that focuses on a different aspect of topology: topologically distinguished 

ending relations. This experiment extends the potential framework for topologically explained 
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similarity ratings. The ideas behind the previous experiments are briefly summarized and then 

juxtaposed to the new experiment to provide context for this article. 

 From experiments on the role of static spatial relations, we know that topology plays a 

central role in human reasoning and in rating the similarity of spatial relations between extended 

entities (Mark & Egenhofer, 1994a; Knauff et al., 1997; Renz, 2002). We also know that it is 

necessary to add specific metric details to the description of a static configuration to fully capture 

situations that are considered similar to each other (Mark, Comas, & Egenhofer, 1995; Nedas et 

al., 2007; Xu, 2007; Zhan, 2002). 

 For the dynamic case, topology can play different roles such as the number of topological 

relations involved or specifying the ending relation of a movement pattern. A topological 

baseline has not yet been established for use in capturing cognitive conceptualization processes 

of movement patterns. Several formal treatments and results from psychological studies exist, 

but these experiments do not specifically target formal characterizations of dynamically 

changing spatial relations (excepting the few that have been discussed in the previous Section). 

The rationale of our experiments was to establish the extent to which topology is able to 

explain cognitive conceptualizations of movement patterns, or, to be more precise, the scope to 

which topology explains the similarity ratings of participants that they create for movement 

patterns involving two spatially extended entities. We wanted to establish where topology 

matters and where metric (or other) refinement is needed. We based our considerations on earlier 

work by Egenhofer and Al-Taha (1992, from now on referred to as E&A92), who developed 

several scenarios using the set of eight topological relations (see previous Section).  
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 E&A92 describe various scenarios, distinguished by the applied topological 

transformation to two spatially extended entities (e.g., translation, rotation, scaling) and the size 

ratios and/or movement specifications of the two entities. Unique transformation and 

specification pairings result in different paths through the conceptual neighborhood graph (see 

Figure 1). In related work (Klippel et al., 2008), we focused only on those scenarios that use 

translation and added several factors for the design of the experimental setup. In the case of 

translation, three scenarios can be distinguished that result in three different paths through the 

conceptual neighborhood graph (see Figure 1). 

 The hypothesis for the experiments (Klippel et al., 2008) was that different paths through 

the conceptual neighborhood graph are a predictor for the similarity ratings by participants for a 

set of movement patterns. 

 This means that the scenarios distinguished by E&A92, which are based on different 

paths through the conceptual neighborhood graph (i.e., a topologically distinguishing factor), 

should allow for an explanation of the similarity ratings created by participants. The results, 

however, showed that this is only partially the case and that other factors, such as different size 

ratios and dynamics (whether one spatial entity is moving or both), had a stronger appeal to 

participants rating the similarity of the movement patterns. In other words, we rejected the 

hypothesis that paths through the conceptual neighborhood graph (to be more precise: the three 

paths we used the previous studies, which are the results of a translation transformation) are the 

best predictor of participants similarity ratings (i.e., the conceptualizations of movement 

patterns). 
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 However, different paths through the conceptual neighborhood graph are only one 

possible mechanism for topology to explain similarity ratings. Topology can play a variety of 

roles in a dynamic scenario, and it is worthwhile to look for other possibilities for topology to act 

as a predictor of participant similarity ratings and hence reveal the cognitive conceptual basis of 

movement patterns. 

 To simplify things, let us stay for the time being with the topological transformation of 

translation. In the original scenarios by E&A92, the path characteristics created by their 

translation scenarios were such that the start and ending relation were always the DC 

(disconnected) relation (see Figure 1). Hence, there was no variation in the relation in which an 

event would end (or start). A look in the literature shows however that this might be a critical 

aspect of conceptualizing movement patterns (Lu & Harter, 2006; Camara & Jungert, 2007; 

Regier & Zheng, 2007). The next section describes our new experiment designed to shed light on 

the role of ending relations in conceptualizing movement patterns. 

 

Experimental setup 

Given the results we have discussed on the importance of endpoints in event conceptualization, 

we extended our previous experimental setting in the following ways. We know from related 

research (Knauff et al., 1997) that participants conceptually distinguish the basic eight 

topological relations (through rating the similarity of spatial scenes). Additionally, we know that 

not all topological relations (or their ‘corresponding’ temporal relations) administer the same 

conceptual saliency in behavioral experiments (and in more formal considerations) (Lu & Harter, 

2006; Camara & Jungert, 2007). Hence, topology in form of characterizing different ending 



Topologically Characterized Movement 
 

relations of movement patterns can be assumed to have an influence on the similarity ratings 

participants create. Therefore, we have the following hypothesis for the experiment reported in 

this paper: 

 

Movement patterns involving two spatially extended entities (modeled as path through 

the conceptual neighborhood graph) are conceptually distinguished on the basis of their 

topological ending relation. This aspect is reflected in participants’ similarity ratings.  

 

General setting 

The methodology described here is the same as used in previous experiments (Klippel et 

al., 2008). We used a grouping task, which has long been an important method in psychology for 

investigating conceptual knowledge and category construction (Medin, 1989; Cooke, 1999; 

Pothos & Chater, 2002). The motivation behind grouping tasks is that people primarily use 

conceptual knowledge to determine the similarity of given stimuli. Stimuli are placed into the 

same group if they are regarded as similar (i.e., as instances of the same concepts); they are 

placed into different groups if they are regarded as dissimilar (i.e., as instances of different 

concepts). 

 

The Grouping Tool 

We developed and have continuously refined a grouping tool (Knauff et al., 1997; 

Klippel & Montello, 2007) that allows for the presentation of dynamic (animated) icons (Klippel 

et al., 2008). The grouping tool partitions the screen into two parts (see Figure 2). The left side of 
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the screen shows the stimulus material (the animated icons). It was necessary to implement a 

scrolling function due to the large number of tested icons; no problems were observed with this 

approach, as scrolling is a common procedure in current interface technology. The right side of 

the screen was empty at the start (no predefined number of groups was provided). Participants 

created empty boxes, much like an empty folder in Windows, into which the animated icons had 

to be placed. The interface was kept very simple and other than the drag and drop operation only 

three buttons were available: New group, Delete group, and Finish. The Finish button only 

became active upon completing the grouping task ( i.e., after all icons from the left side had been 

placed into groups on the right side).  

 

Figure 2 about here 

 

Participants 

19 participants (6 female) took part in the experiment. They were Penn State 

undergraduate Geography students (average age: 21.7) and received course credit for their 

participation. All participants were native English speakers and none of them had knowledge 

about topology, which was tested by a) asking them whether they had heard about topology (18 

negative answers), and b) to name any topological relations (no participant named a topological 

relation correctly). 

 

Procedure 
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The experiment took place in a GIScience laboratory at the Geography Department at 

Penn State. Participants were tested in groups (8, 6, 5). The computers (Dell, Pentium D, 3 GHz, 

2 GB RAM) in the lab have 20’’ wide screen Dell monitors, suitable for a grouping task. The lab 

was prepared with view blocks and computers were arranged such that participants could not see 

the screens of other participants to ensure individuality of the results.  

Participants were asked to first give consent. This was followed by an introduction to the 

experiment and a short biographical survey requesting the aforementioned personal information. 

Instructions for the grouping tool were then provided: participants were explicitly advised to 

imagine something geographic that the animated icons could represent. An example grouping 

task using animal icons was then performed to familiarize the participants with the grouping tool 

and to give them an example of creating similarity ratings from a different domain. After the 

warm-up task, participants were shown 150 animated icons on the left side of the screen that they 

had to group according to their similarity (on the right side of the screen). They were explicitly 

advised that there is no right or wrong way of grouping the icons.  

After the main task, participants performed a second task in which they a) had to label the 

groups they created and detail which geographic scenario they were thinking of and b) draw a 

symbol for each group. The groups the participants created were shown to them one at the time. 

The results of this part of the experiment are not discussed in detail in this paper. 

 

Materials  

We used 150 animated icons. All icons showed two circles; one light gray circle and one 

dark gray circle (see, for example, Figure 3). Both circles were partially transparent, each using a 
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different alpha value so when the circles overlapped, the shared space appeared darker but both 

circles were still identifiable. The icon design was guided by the following criteria: We used the 

nine cases we employed previously (Klippel et al., 2008) that were derived and extended based 

on the formal characterization of E&A92 (for extended details, please refer to Klippel et al. 

2008). These nine cases are organized into three scenarios, each distinguished by the path 

through the conceptual neighborhood graph that it elicited. 

 

Scenario 1: 

1. Spatially extended entity A is smaller than B and A is moving over B. 

2. A is smaller than B and B is moving over A. 

3. A is smaller than B and both are moving toward each other. 

Scenario 2: 

1. A is larger than B and A is moving over B. 

2. A is larger than B and B is moving over A. 

3. A is larger than B and both are moving toward each other. 

Scenario 3: 

1. A and B have the same size and A is moving over B. 

2. A and B have the same size and B is moving over A. 

3. A and B have the same size and both are moving toward each other. 

 

Taking these nine scenarios as a basis, a range of animated icons was created. In addition 

to these nine cases, we defined two size ratios (while still maintaining the scenario dictated 
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setting, i.e. whether A or B is larger): one ratio with a large size difference between entities and 

one ratio with a small size difference between entities. These size differences were not fixed but 

were generated within a range using a random number generator from random.org. For this 

purpose, random numbers for the ranges given below were generated for the radius of each circle 

(i.e., the spatially extended entity). 

 

The range for the diameter (in pixels) for the large size difference: 

o Small spatial entity: 10-15 

o Large spatial entity: 30-35 

The range for the diameter (in pixels) for the small size difference 

o Small spatial entity: 16-21 

o Large spatial entity: 24-29 

 

The last and most important variation we introduced in this experimental setup were the 

different ending relations. Orthogonal to the two criteria introduced above, a path through the 

conceptual neighborhood graph can end in nine (or seven) topological relations discussed in 

previous Sections. That means, if we have a translation movement and start with two spatial 

entities that are disconnected (DC), we can have the following ending relations in the three 

scenarios: 

 

o Scenario 1 (see also Figure 1 and 3): 
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o DC (the two spatial entities never connected), EC, PO, TPP, PP, TPP-2, PO-2, 

EC-2, DC-2 

o Scenario 2 

o DC, EC, PO, TPPi, PP, TPPi-2, PO-2, EC-2, DC-2 

o Scenario 3 

o DC, EC, PO, EQ, PO-2, EC-2, DC-2 

 

Hence, we have nine ending relations for each of the three cases in Scenario 1 times the 

two different size ratios (54 possibilities). We have the same setting for Scenario 2 (54 

possibilities), and we have seven ending relations for each of the three cases in Scenario 3 (were 

both spatial entities have the same size), again times the two size ratios (42 possibilities). This 

results in 150 animated icons overall. 

 

Figure 3 about here 

 

Each icon was square and 100×100 pixels in size. At the start of each animation, the pair 

spatial entities A and B were positioned near opposite borders of the icon. In our previous 

experiment, we found that the direction of movement (i.e., from which opposite borders the 

movement starts) had no influence. Here we used only left-right/east-west movements. The 

initial horizontal distance from the border to the center of each region was set to 15-45 pixels; 

this adaptation was necessary to accommodate the different ending relations. For example, for 

the relation DC-2, one spatial entity moved through/across the other; this required some space 



Topologically Characterized Movement 
 

‘behind’ the second spatial entity (in case it did not move). The vertical starting position of each 

of the two spatial entities along the icon boundary was offset using a random number, generated 

using the website random.org. Each moving spatial entity then moved on a straight line from its 

starting location to the starting location of its pair. As a result, although spatial entities moved 

across the icon from one border to the opposite border, the direction of movement was 

randomized. Note that this experimental design only considers animations with spatial entity 

trajectories that are at 180° to each other. The more general cases of trajectories at other angles 

were excluded in the interests of a manageable experimental setup and because the inclusion of 

additional trajectories did not increase the possible range of topological changes exhibited by the 

animations. The ending relation PO used the radius of the smaller entity to determine the overlap 

of the two entities. Figure 4 summarizes the dimensions and construction of one animated icon 

for B bigger than A, where B is moving over A starting from the left hand boundary of the icon. 

The dashed arrow in Figure 4 represents the movement vector of B, while “rnd(60/50)” 

represents a random integer number of pixels used to calculate the starting positions. 

 

Figure 4 about here 

 

We used Macromedia Flash to create the animations, which were subsequently exported 

as animated GIF icons. A further modification to the animations occurred at this stage. The total 

number of frames in each animation was varied slightly, from 55 to 70 frames. This ensured that 

relative speeds of the animations were slightly different, avoiding any possible perceptual effects 

from synchronous movement. In the customized grouping tool, the animations were tuned to take 
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approximately three to four seconds to complete. At the end of each animation, 15 additional 

frames were added to indicate perceptually the endpoint of this movement (i.e., the animation 

stopped at the end position for about 2 seconds, longer than in the previous experiments). 

Afterwards, the animation loops back to the original starting point and plays again. 

 

Results 

Each participants’ grouping results in a 150 x 150 similarity matrix. The matrix columns 

and rows correspond to the number of icons used in this experiment. This matrix encodes all 

possible similarity ratings between two icons, producing a symmetric matrix of 22,500 cells. 

Similarity is binary encoded; a pair of icons is coded as ‘0’ if its two items are not placed in the 

same group and ‘1’ if its two items are placed in the same group. The overall similarity of two 

items across all participants is obtained by summing over all the similarity matrices of individual 

participants. For example, if two icons (called A and B) were placed into the same group by all 

19 participants, we add 19 individual ‘1’s to obtain an overall score of 19 in the respective cells 

for matrix position AB and BA, that is, 19 is the highest similarity rating that can be obtained. 

Please note that the general advice for grouping experiments is to use at least 15 participants 

(Tullis & Wood, 2004). Yet, we did not rely on this theoretical statement alone and cross 

validated our results by splitting the pool of participants into two random groups and thereby 

internally validated that the number of participants was sufficient (as the results were similar, see 

below). 

To analyze the categorical grouping data, we subjected the overall similarity matrix to a 

hierarchical cluster analysis. Aldenderfer and Blashfield (1984) recommend reporting cluster 
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analysis results together with the following five criteria: Software: CLUSTAN™; Similarity 

measure: Squared Euclidean distance; Clustering method: Several clustering methods to cross 

validate the findings: Ward’s method, average linkage, nearest, and furthest neighbor methods. 

Number of clusters: We not only used cluster analysis and the validation techniques discussed 

below, but additionally show results of a multidimensional scaling (MDS) analysis; Validation: 

Comparison of different clustering methods (see Section Validation), random selection of two 

sub-groups with a cluster analysis on both groups to compare the results, MDS. 

Figure 5 shows a dendrogram generated using Ward’s methods. A six cluster solution 

seems to be the most valid interpretation; we find two clusters for each of the three scenarios 

discussed by E&A92. Even more strikingly, the clear distinction we found previously between 

the number of spatial entities moving in the animation (either one or both) does not appear to be 

a distinguishing criterion for creating groups, that is, for establishing similarity of animated 

icons. 

 

Figure 5 about here 

 

We turn now to our main hypothesis that the ending relation of a dynamic geographic 

phenomenon has great appeal for conceptualizing a dynamic phenomenon and that topology, in 

the form of defining the ending relation of a movement pattern, can be used as a predictor for the 

similarity rating of participants. We find that the distinction of the basic scenarios seems to have 

a great appeal in predicting similarity ratings in this setting, however, the different ending 

relations are buried deep in the clusters themselves. There is no identifiable consistency that 
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ending relations might play a role across different clusters. It sometimes seems to be the case that 

the ending relations DC and EC individually form more distinct sub parts in their corresponding 

clusters, but this could not be confirmed by the KlipArt analysis (see below). 

We were, however, intrigued by the results obtained by the cluster analysis, which show 

that the main grouping criterion was the size difference between the icons and not the movement 

patterns characteristics (i.e., the different topologically distinguished ending relations). To better 

understand these results, we used a tool called KlipArt (Klippel, Hardisty, & Weaver, 2009). 

This tool allows for looking into the grouping behavior of individual participants and/or icons 

pairings. An example analysis using KlipArt is provided in Figure 6. The Figure shows the 

grouping behavior for all icons that have the relationship: A is the same size as B and both are 

small in size and B is moving toward A. Figure 6 clearly demonstrates that size was the major 

criterion for grouping these icons. About half of the participants (numbers in yellow boxes) 

placed all icons with this characteristic into the same group (upper right corner) and another 

three participants placed all but one icon (146) into the same group (lower left corner). An 

analysis of why icon 146 was placed in a group with other icons showed that size once again was 

the most important factor as icon number 146 is the smallest of this group and was placed 

together with other very small icons into the same group.  

We performed this kind of analysis for relations defined by the discussed formalisms that 

guided the design of this experiment. We found that some participants did make grouping 

distinctions on the basis of topologically distinguished movement patterns. In cases where the 

topological relation disconnected (DC) was singled out, we found for example, linguistic 

descriptions such as species range -- each species (circle) has their own territory but will not 
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cross to the other side (participants 53 in Figure 6). Overall we found two participants who 

grouped together all icons with the relation disconnect. Other topologically distinguished ending 

relations yielded similarly low participant numbers. 

 

Figure 6 about here 

 

Validation 

First, we validated the interpretation that six is the most sensible interpretation of the 

number of clusters. We started with analyzing the data using multi-dimensional scaling (MDS) 

(see Figure 7). MDS, like cluster analysis, is based on similarities, with the difference from 

cluster analysis that the similarity between entities is used to create a map-like representation that 

shows the best possible fit for all similarity ratings in two dimensions. The MDS results indicate 

a clear six cluster structure (CLUSTAN_MDS, minimum stress = 1.7313%, fit is excellent). The 

gray tones (colors) indicate the groups identified in the cluster analysis in the next Section. The 

few ‘outliers’ can be explained by the fact that random size ratios sometimes produce ratios close 

to other size ratios and therefore animated icons seem to have been placed into different groups 

(see below). 

 

Figure 7 about here 

 

Kos and Psenicka (Kos & Psenicka, 2000) and Clatworthy et al. (2005) suggest 

examining cluster stability across different clustering methods and across different subsets of 
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participant responses. A comparison across different clustering methods (Ward’s method, 

average-, complete, and single-linkage) showed the same cluster structure for the first three 

methods and only single linkage, which is prone to chaining, did not exactly show the same 

results (which we expected). The cluster structure at the cut-off point for the six-cluster solution 

(shaded areas) is shown in Figure 5 using Ward’s method. The dendrogram is scaled to fit the 

page. As an example, some icons from each cluster—statically showing the DC starting 

relation—were chosen to provide a better impression of the grouping strategies the participants 

applied. 

Again following Kos and Psenicka (2000), we validated the six cluster interpretation 

across subsets of participants. Participants were split into two groups using random numbers 

from the website random.org. We performed Ward’s method on both groups and the results show 

that both sub-groups exhibited nearly identical cluster structures. In both groups a total of 5 (4 

different, 1 same) icons (or 3.3%) deviated from the suggested six cluster solution. 

The average number of groups that participants created was 8.4, ranging from 2 to 18. 

Although the number of participants is rather small, we performed an independent t-test on the 

number of groups male (13) and female (6) participants created. Women created significantly 

more groups than men (t=-3.279, df=17, p=.004, two-tailed). At this point, this is a result that 

may be indicative of sex differences (Coluccia & Louse, 2004), but will not be discussed further 

as our previous results did not indicate significant sex differences. 

 

Discussion 
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The results show that overall the ending relations in our experimental setup have little 

effect on the grouping behavior of the participants. This is somewhat unexpected as several 

related experiments (Regier & Zheng, 2007; Lu & Harter, 2006) did find that the ending 

relations are important and that certain ending relations are conceptually more similar than 

others. We expected the need to weight the edges in the conceptual neighborhood graph to better 

reflect cognitive conceptualization processes according to the ending relation of an event. 

Because this was found to not be the case, we have to reject our main hypothesis (see Section 

Experimental Setup). 

While the experiment (at large) failed to exhibit similarity ratings influenced by ending 

relations, it did confirm the importance of size differences for explaining participants’ similarity 

ratings. Size is a perceptually (as well as a conceptually) important classification criterion 

(Wolff, 2008; Lockhead & Pomerantz, 1991). An outlook on how the size factor can be 

conceptually explained is given in the conclusion, focusing upon aspects of causality (i.e., 

making the point that perceptual characteristics are related to conceptual ones). It is important to 

note that participants did choose, out of a large set of possible semantic and perceptual grouping 

criteria, size as the best structuring information. Hence, it is not the case that simply each 

participant picked her or his own criteria. 

Additionally, it is important to note that size differences are also a reflection of 

topologically distinct paths (i.e., whether we go down the left or the right side of the conceptual 

neighborhood graph), a distinction made in the original classification by E&A92 (see Figure 1 

and compare the three basic scenarios described in Section Materials). This is, however, only 

true for the lower level of the dendrogram, the level with the first clearly distinguished clusters 
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(see Figure 5). Other factors take over if we follow the grouping behavior through the 

dendrogram; in the case of the experiments reported here, size again, but this time not in favor of 

topology; it separates large from small size differences, which is topologically not distinguished. 

This has been the case in the current experiment as well as in our previous work (Klippel et al., 

2008). We therefore would need to reverse the statement that topology matters and other aspects 

refine the conceptualization of movement patterns. It seems to be that other factors matter and 

topology refines. What we do not know yet is how much and in which way other factors matter, 

and when topology is responsible for rendering distinctions more precise. 

 

Conclusions and Outlook 

Topology (and Allen’s temporal intervals that both can be characterized by conceptual 

neighborhood graphs) plays a central role in characterizing movement patterns formally (e.g., 

Worboys & Duckham, 2006). We have discussed work that makes assumptions on formal 

grounds on how basic topological relations can be employed to characterize movement patterns 

and, to provide an additional focus, how the basic eight topological relations are suggested to be 

grouped together. One discussed proposal is put forth by Camara and Jungert (2007), who 

suggest the following distinction: DC (disconnected) is in a group of its own and all other 

topological relations are grouped together. This proposal results in only two superordinate 

categories for topological relations in characterizing movement patterns. 

A behaviorally validated approach is discussed by Lu and Harter (Lu & Harter, 2006). 

They approached this question from the same general perspective that we took in this article: Are 

qualitative formal characterizations cognitively adequate? In their experiments they found that 
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temporal relations (that can be mapped onto the topological relations characterized by the 

conceptual neighborhood graph we used) are grouped together, but differently than suggested by 

Camara and Jungert. Their two group solution places disconnected (DC) and externally 

connected (EC) together into a first group and partial overlap (PO), tangential proper part (TPP), 

and non-tangential proper part (NTPP) together into a second group. 

While we set out to add to this research and to resolve the discrepancies between these 

characterizations, ending relations in our experiments were not the main criterion for 

conceptualizing movement patterns. One distinction that surfaced in the cluster and MDS 

analysis we presented is indeed a distinction made topologically but independent of ending 

relations: The two sides of the conceptual neighborhood graph (paths going down the left side or 

the right side) are distinguished, which is primarily a reflection of size differences (discussed 

below). Yet, this is not the dominant criterion of distinction, as again size but this time different 

size ratios are the most pertinent grouping criterion. To reflect this finding we would need to 

reverse the statement by Mark and Egenhofer (Topology matters and metric refines) into: 

Something matters (in this case the size ratios) and topology refines. 

Size differences, as they surfaced as a guiding principle for the conceptualization of 

movement patterns in our experiments, are an example of how perceptual and conceptual aspects 

of cognition may work in unison. The discussion by Goldstone (1994) on the importance of 

perceptually induced similarity ratings and the theory of perceptual symbol systems proposed by 

Barsalou (1999) represent two strong advocates for the perceptual basis of our category system. 

How is it, then, that size differences could be considered as being such an important factor in 

conceptualizing movement patterns? Just as a reminder, the two different size ratios were 
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actually randomized size ratios within two distinct size-ratio-ranges, not simply two fixed ratios. 

Additionally, in the second experiment in Klippel et al. (2008), we also found a tendency to use 

size differences despite the fact that size was completely randomized (no predefined size ratios). 

It is certainly the case that we can relate size, or from a geographic perspective, scale, to many 

important aspects in perceiving and conceptualizing environmental information. Freundschuh 

and Egenhofer (1997) as well as Montello (1993) have proposed typologies of spaces at different 

scales to create an awareness of the differences in cognitive processes across different scales. 

Size differences do not necessarily mean scale differences, but a combination certainly might 

influence conceptualization processes. Some examples might make this point clearer: It is an 

important distinction whether a large or a small hurricane crosses a peninsula, whether a small or 

a large oil slick hits a coast, whether a single buffalo or a herd crosses a corn field, etc. Hence, 

the size of the entities involved in movement patterns does matter and is not only an aspect of the 

perceptual characteristics of the stimulus. 

Chater (Chater, 1996, Chater, 1999), in several articles, and more recently Pothos 

(Pothos, 2005; Pothos & Close, 2008), discuss the simplicity principle that potentially explains 

both perceptual organization and conceptual aspects of categorization. Build on the observation 

that it is crucial for the cognitive systems to find patterns in the world, it is evident that patterns 

are not randomly defined. Instead, there are guiding principles from both perception and 

conception that allow for (or favor) certain patterns over others. Without the ability to identify 

patterns, or, from the perspective of categorization, to classify, the human mind would not be 

able to understand, explain, or predict anything. Chater and Pothos propose one principle that the 

human mind employs to find patterns: the pattern that offers the simplest explanation for the 



Topologically Characterized Movement 
 

available stimulus is chosen. This idea that simplicity is a crucial aspect of cognition manifest 

itself in manifold research approaches and findings, from Occam’s Razor to work on geographic 

primitives by Brunet (Brunet, 1987). 

The interesting question is: what defines the simplest pattern? In other words, what is the 

simplest dimension along which a set of stimuli can be organized into a pattern? In the case of 

our experimental setup, we can make the observation that topologically distinguished ending 

relations, while a valid theoretical prediction for human conceptualization (Knauff et al., 1997), 

is not the simplest distinguishing criterion, neither by itself, nor in combination with other 

potential factors. Topologically, we would have to distinguish at least nine different categories. 

Adding any other dimension that potentially could be used—whether topology (here identity that 

is responsible for whether the path through the conceptual neighborhood graph goes down the 

left side or the right side), or the dynamics (whether one or both entities are moving), or the size 

differences—many distinctions (one may say, too many) would be necessary. No doubt that an 

explicit instruction would allow participants to adhere to these dimensions and would allow them 

to group the stimulus accordingly. However, in the light of the results of Pothos and colleagues 

(Pothos & Close, 2008) it seems to be more natural for a perceptual-cognitive agent to select the 

simplest dimension. 

On the other hand, the clustering structure reveals that the groups are not created on 

singling out one dimension alone! The main grouping structure is indeed a combination of size 

differences and identity. This finding is very much in line with work on similarity by Goldstone 

(1994), who asserts that humans are not confined to a single dimension in making similarity 

judgments, but that they very well may use the combination of two factors. 
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From a certain perspective, objects and events (e.g., movement patterns) share 

characteristics. Zacks and Tversky (2001) make a strong point in listing the similarities of 

objects and events. For example, events and objects are comparable in that they formally can be 

characterized by partonomies and taxonomies. They also may share a convergence of perceptual 

and conceptual features at the basic-level of their respective category structure. From another 

perspective, though, objects and events are dissimilar. Gentner and Boroditsky (Gentner & 

Boroditsky, 2001) (based on previous work by Genter) point out the difficulties children have 

with learning verbs compared to naming objects. Gentner and Boroditsky use these findings to 

revise the view that both, nouns and verbs belong to open-class words but instead, propose a 

continuum in which verbs are placed between open-class (nouns) and closed-class (prepositions 

and determines) words. This continuum is referred to as the division of dominance. 

The aspect important for the interpretation of our experimental results is that from the 

latter perspective (objects are conceptually easier than verbs), we could make an additional point 

as to why the non-changing relation between the entities in our experiment (size ratios) 

dominated the dynamic aspects. How far this might be related to linguistic influences is beyond 

the scope of the current article, but it would make an interesting experimental setup to analyze 

linguistic influences on the conceptualization of movement patterns (Boroditsky, 2001). 

The last aspect we would like to briefly mention is work on event segmentation based on 

shape characteristics of the trajectory of a movement pattern (Shipley & Maguire, 2008). We 

deliberately did not introduce variations in the trajectories to avoid this aspect in our 

experimental setup. However, as Shipley and colleagues demonstrate through their theoretical 

work on object perception and the importance of shape (Biederman, 1987; Singh & Hoffman, 
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2001), the characteristics of trajectories are an important aspect for the conceptualization of 

movement patterns. Work toward a more general framework on event conceptualization 

involving single entities, therefore, would need to incorporate several aspects: the conceptual 

changes of an entity (although they did not surface in our experiment), the object characteristics 

of entities involved (that did surface in our experiments), and the shape characteristics of the 

trajectories. 
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Figure Captions 

Figure 1. Topological relations as identified by Egenhofer’s (Egenhofer & Franzosa, 1991) 9-

intersection model and RCC-8 (Randell et al., 1992) between two spatially extended entities (A 

and B) arranged as a conceptual neighborhood graph (Freksa 1992, modified). Labels are taken 

from the RCC terminology: DC – disconnected, EC – externally connected, PO – partial overlap, 

TPP – tangential proper part, NTPP – non tangential proper part, ‘i’ indicates inverse relations). 

 

Figure 2. Screenshot of an ongoing grouping experiment. The icons are animated in the actual 

experiment. 

 

Figure 3. Examples of ending relations. All ‘events’ had the same starting condition, i.e. DC. In 

general, all relations to the left of one of the ending relations have to be passed through, the same 

relations but with different preceding relations are indicated by ‘-2’ (Note: transparency values 

have been adapted for printing). 

 

Figure 4. The construction of one icon. 

 

Figure 7. Cluster analysis using Ward’s method. The icons depicted are exemplars to show 

general size differences the guided the grouping behavior of participants. In each of the created 

clusters we find different ending relations as well as different dynamic characteristics, i.e. 

whether one or both entities are moving. 
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Figure 5. The KlipArt tool. Example analysis of grouping behaviors for subsets of icons. 

 

Figure 6. Multidimensional scaling results. Squares represent animated icons. Coloring (gray 

tones) is done on the basis of a 6 cluster solution. 
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Figure 7 

 




