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"If every object and event in the world were taken as distinct and unique---a thing in itself 

unrelated to anything else---our perception of the world would disintegrate into complete 

meaninglessness. The purpose of classification is to give order to the thing we experience." 

--- Abler, R., Adams, J. S., & Gould, P., 1971 

 

Of all the countless possible ways of dividing entities of the world into categories, why do 

members of a culture use some groupings and not use others? What is it about the nature of the 

human mind and the way that it interacts with the nature of the world that gives rise to the 

categories that are used? 

--- Malt 1995 

 

1. Introduction 
 

The way humans understand their natural environments—landscapes—either as an individual or 

as a collective, frames prominent research topics in several disciplines.  Landscape perception for 

instance has been analyzed for land management and planning purposes to characterize landscape 

aesthetics and objective scenic beauty. Understanding earth surface processes through terrain 

analysis has been relevant to military and civil engineering. From a geographic perspective, it can 

be argued that the man-land tradition or in more recent terms human-environment relations is 

nothing less than one of the four intellectual cores of geography (Pattison 1964, see also Mark et 

al. 2011).  

Land cover data has been used for much more than looking up land cover at a given location, 

including uses for climate modeling, food security, and biodiversity monitoring. The focus of this 

book chapter is on how the abundance of freely available high resolution imagery of the earth’s 
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surface and the maturing of crowd science offers new opportunities for an unprecedented access 

to environmental information. We will examine how crowd science and human perceptions can be 

used for the purposes of improving overall quality of land cover datasets. First we will discuss 

variation between land cover classifications and explore why they exist. Second we will discuss 

issues and debates surrounding the accuracy of land cover datasets. Last we will discuss 

shortcomings with current assessment processes and opportunities for new methods to assist in the 

overall quality of land cover datasets.  

Although widely used, many global land cover datasets have unique characteristics that lead 

to differences between classifications. Variety is represented through differing land cover classes, 

changed meanings of shared terminology, and differences in interpretation and perception of the 

land cover classes. Ahlqvist (2008) discussed the importance of standardizing terminologies in 

science, using the topic of variation in land cover classifications as an example. He stresses the 

need for more interpretability, reflecting on the subjectivity not only in the creation process of land 

cover classifications, but also in the interpretation of the classification from the user. This point 

builds off of research by Comber et al. (2005) who discusses the varying conceptualizations of the 

world that geographic data are mapped into. They list examples of how terms such as Forest and 

Beach have varying meanings based on the purpose that the land cover dataset was created for, 

and how these terms are interpreted differently across cultures and among users. There is a growing 

demand for harmonization of data, especially in class descriptions (Jepsen and Levin, 2013). 

Recognizing this becomes more important as local environmental knowledge is increasingly being 

incorporated into land use and land cover analysis. Robbins (2003) exemplifies this through 

differences shown in land cover and land use classification choices made by foresters and herders, 

enforced by their respective cultural and political role in their community. This creates variation 

between the classifications generated by the producers, and variation between how a unique land 

cover class is perceived by the users.  

Gaining a deeper understanding of the perception of land cover classes addresses significant 

challenges in the effectiveness of classification interpretability (Ahlqvist 2012). Comber et al. 

(2004) uses the example of the Great Britain Datasets LCM1990 and LCM2000 to illustrate how 

changes in methodology and semantics cause unknown variation between datasets, creating 

uncertainty between either observing land cover change, or simply observing a change in how the 

land cover is represented.  

In order to reduce variability in interpretation of classification, land cover classifications 

must be concerned with users’ natural concepts and perceptions of the land cover, and be aware of 

formal cognitive models about the common-sense geographic world. Coeterier (1996) concludes 

that even when comparing landscapes of great differences between inhabitants of those landscapes, 

there is agreement among the importance of higher level attributes of the landscape. Some of these 

attributes include the unity of the landscape, its use, maintenance, naturalness, and spaciousness. 

More so, these attributes are not necessarily independent from each other. Habron (1998) analyzes 

the perceptual differences of Wild Land across varying demographics in Scotland. He concludes 

that human presence/influence has a large effect on the perception of Wild Land. Furthermore, 

what is considered Wild Land varies between sections of the population, with a consensus on a 

core definition and variation at the periphery.  

Along with classification and interpretation variation, land cover datasets have accuracy 

related issues. Foody (2002, 2008) has discussed the state of land cover dataset quality along with 

their corresponding accuracy assessments and has noted the debate surrounding accuracy 

expectations. Once accuracy assessments are performed, of which there are multiple different 



methods of assessment, the vast majority of land cover datasets do not meet the commonly 

recommended target of 85% accuracy. He further discusses that 85% is perhaps unrealistically 

high. This number was historically specified by Anderson et al. (1976) for mapping general land 

cover classes (Anderson, Level 1). Additionally that accuracy rate was inspired by work associated 

with USDA’s Census of Agriculture in where 85%, “would be comparable to the accuracy of land-

cover maps derived from aerial photograph interpretation.” (Foody, 2008, pg. 3140). Yet in the 

face of potentially harsh critiques of accuracy, land cover nonetheless can benefit from new 

approaches of classification and assessment. Wilkinson’s (2005) 15 year survey of published 

papers on satellite image classification revealed no upward trend in classification accuracy. This 

creates an opportunity for unconventional classification approaches to assist in a severe lack of 

advancing accuracy rates.   

As previously mentioned, once land cover datasets are created, accuracy assessments are 

often performed to measure the quality of the dataset. Comber et al. (2012) notes that a common 

approach of measuring land cover accuracy is to compare the dataset with corresponding data that 

is considered to be of a higher accuracy. This could mean a collection of relatively sparse ground 

data acquired in the field used as control points. Comber discusses that these approaches of 

assessment overlook the spatial distribution of errors, leading to possible localized sub-regions of 

high inaccuracy that distort the global accuracy. Furthermore, Foody (2002) reiterates that land 

cover is dynamic. The earth’s surface will inevitably change in the time it takes to update datasets. 

This creates an opportunity for new methods of assessment and classification that are flexible, has 

the capability of covering large areas, and are quick relative to classic approaches.   

New (unconventional) methods need evaluation. While there is a lot of interest surrounding 

the opportunities of the crowd, examples of which will be explained in detail in section 2, there is 

a high demand for systematic evaluations of how much improvement in land cover classification 

can be achieved using crowd-based assessments. In response to these challenges, this chapter 

analyzes the correspondence between human conceptualizations of land cover and spectrally 

derived land cover datasets. If crowdsourced human participants are to be incorporated into the 

evaluation of land cover data, there needs to be a more rigorous understanding of how humans 

perceive and conceptualize land cover types and a more detailed assessment of how well humans 

perform in recognizing predefined land cover classes. We analyze crowdsourced human 

participants’ ability to recognize existing land cover classes given on the ground photographs. We 

are reporting on three experiments that provide insights on the relationships between human 

conceptualizations of land cover and land cover classifications using novices, educated novices, 

and experts. Our findings suggest misclassifications are not random but rather systematic to unique 

landscape stimuli and unique land cover classes. By comparing novices and experts we are able to 

evaluate the potential for using crowdsourcing in aiding the advancement of land cover 

classifications.  

 

2. Background 
 

Recent growth and improvement to online crowdsourcing platforms now allow for large-scale 

contributions to scientific research. These crowd contributions have shown to be successful across 

many disciplines, including the discovery of protein structures (Khatib et al. 2011) and 

identification of new galaxies (Clery 2011). In the context of land cover, using crowdsourced 

human participants to validate global land cover datasets has been recognized by previous 

research. This use of crowdsourcing shows promise, especially as the use of more than one dataset 



often provides more accurate land cover mapping (Aitkenhead and Aalders, 2011). The Geo-Wiki 

project (Fritz et al. 2009) asks online participants to use aerial imagery via Google Earth as well 

as any local knowledge they may have to make classification choices on which land cover type 

they are observing given a predefined classification scheme. This volunteer geographer approach 

complements the classification and accuracy assessments in use, but at the moment fails to 

guarantee a level of quality in the volunteered data.  

The Land Use/Cover Area Frame Survey (LUCAS) (http://www.lucas-europa.info/) is an 

example of a more authoritative, non-crowd based attempt at capturing land cover data. LUCAS, 

commissioned by Eurostat, deploys land surveyors to many locations across the European Union 

to determine land cover/land use, record transects, and take photographs of the landscape. By 

virtue of LUCAS’s means of data collection, creating a comprehensive dataset using this method 

would be highly improbable. Using these data as a means of validation however is more likely.      

For the purposes of measuring land cover, due to the complexity of the earth’s surface, all 

measurements contain error to some unknown extent. It is thus very difficult to precisely describe 

and categorize features of land cover. This error is true for both remote sensing classification and 

classification via human interpretation of aerial imagery. Foody (2002) discusses this from the 

perspective of remote sensing to the degree that ground truth measurements are still a classification 

and thus contains some degree of error. Kinley (2013) and Hoffman and Pike (1995) discuss this 

from the perspective of volunteered data and terrain analysis, stating that these data and terrain 

descriptions are often critiqued harshly for not meeting an impossible ideal. Yet in the face of 

inescapable error in land cover data and volunteered data, steps must be taken to ensure the 

methods for collecting data allow for the opportunity of the highest quality products. This means 

understanding humans’ concepts and perceptions of land cover in order to assist in the 

classification process.  

The majority of experiments measuring quality of crowdsourced volunteered land cover 

classifications come from experiments run through the Geo-Wiki project (Perger et al. 2012, See 

et al. 2013, Foody et al. 2013a, Comber et al. 2013, Comber et al. 2014). See et al. (2013) most 

notably reports on an experiment which expert and non-expert participants during a Geo-Wiki 

campaign were asked to classify land cover given aerial imagery for the purposes of measuring 

participant accuracy rates, and comparing expert and non-expert results. Control points generated 

by three experts visually classifying land cover from aerial imagery were used to measure how 

accurate the crowdsourced participants’ classifications were. Averaged accuracy rates range from 

66%-76% for the full set of participants, with experts reaching a maximum of 84%, and non-

experts reaching a maximum of 65%. Comber et al. (2013) also uses crowdsourced classification 

data gathered from Geo-Wiki but focuses on the level of agreement between expert and non-expert 

classification of land cover type, rather than reporting accuracy rates measured against control 

points. They conclude by illustrating map outputs that show obvious visual differences between 

expert and non-expert classification choices, and call for “…further investigation into formal 

structures to allow such differences to be modelled and reasoned with” (Comber et al. 2013, pg 

257). Comber et al. (2014) further states that expertise in classification has a general influence but 

is varied across land cover classes. 

Similarly to Geo-Wiki, the OpenStreetMap (http://www.openstreetmap.org) dataset is 

comprised of crowdsourced geographic information that research has identified as potential data 

to assist, support, and validate other land use mapping projects. Arsanjani et al. (2013) has 

analyzed OpenStreetMap contributions to analyze the accuracy of participants’ land use (opposed 

to land cover) classifications in an urban setting compared to other non-crowdsourced land use 



datasets. He concludes that OpenStreetMap, and in general other forms of crowdsourced 

geographic data, can be valid data sources for mapping land use. 

Perger et al. (2012) notes how land cover can be difficult to classify when only given aerial 

imagery. Deviating from classification via aerial imagery, others have attempted to measure the 

effectiveness of using on-the-ground photographs for the purposes of land cover classification 

(Iwao et al. 2006, Foody et al. 2013b). The data source of these ground based photographs come 

from the Degree Confluence Project (DCP) which will be explained in detail later in the chapter. 

While the Iwao and Foody papers both report land cover classification accuracy rates, the main 

intention of their research was to test the validity of using DCP data to classify land cover. Both 

conclude DCP data is a valid data source when attempting to classify land cover. 

To summarize, land cover classifications have not experienced significant accuracy 

improvements in the past 20 years. Research has recognized an opportunity to benefit from 

advancing technologies and improvements in crowd science to assist in the evaluation of land 

cover. This has largely been experimented through providing crowdsourced participants aerial 

imagery of the earth surface and asking for their classifications of the land cover. Aerial imagery 

however can sometimes provide a lack of information when distinguishing between similar land 

cover classes. Other research has proven the validity of using on-the-ground photographs for land 

cover classification, but has failed to test it with crowdsourced participants and a wide range of 

land cover classes.  

 

3. Experiments 
 

We conducted three experiments to shed light on humans’ understanding of and ability to classify 

land cover according to official National Land Cover Dataset (NLCD) 2006 classes (Fry et al. 

2011). The first two experiments involve lay people (without and with intervention), while the 

third uses experts.  

 

3.1 Experiment 1 - Lay people, no intervention 
 

The first experiment addresses the question whether lay people can classify images of land cover 

according to existing land cover classes. While the ground truth itself, that is, the NLCD 2006, 

only has a level II accuracy of 78% (Wickham et al. 2013), it serves as a starting point for 

improving the understanding of how humans perceive land cover classes. 

 

3.1.1 Materials  

Two datasets were used for this experiment: on-the-ground-photographs of landscapes provided 

by The Degree Confluence Project (DCP) (confluence.org), and the NLCD 2006 provided by the 

Multi-Resolution Land Characteristics Consortium (http://www.mrlc.gov).  

The DCP is a site that provides a platform for collecting crowdsourced photographs of 

landscapes at confluence points across the world in a systematic way. The word confluence as 

defined for the purposes of the DCP is the location where two integer latitude and longitude 

coordinate lines meet. An example of this would be ‘latitude 42 N, Longitude 100 W’ as opposed 

to ‘latitude 42.65 N, longitude 100.23 W’. Users are encouraged to visit these locations, take 

photographs of the landscape, and upload the images with metadata such as date visited and travel 

information. 



For the scope of these experiments, we constrained our data collection to the contiguous 

United States. A total of 799 photographs were collected out of a possible 856. In an attempt to be 

consistent in data collection, north facing photographs were collected when at all possible. Two 

sampling criteria restricted the data collection process: First, scenes that included snow in the 

photograph were excluded as this is not reflective of the land cover but rather temporal weather 

conditions. Second, images that included human presence were excluded. Outside of these 

sampling restrictions, few confluences do not have photographs uploaded to the website, and as 

such, could not be collected.   

Latitude and longitude coordinates from the DCP dataset were extracted and converted into 

a point shapefile to be used in ESRI’s ArcGIS software (Figure 1). This allowed for the extraction 

of the corresponding land cover class from NLCD level II (16 land cover classes) for each 

confluence point and its corresponding image. Out of the 16 possible classes from NLCD level II, 

11 were used in the experiments: we aggregated deciduous forest, evergreen forest, and mixed 

forest into one forest class. Additionally, the following three classes did not provide sufficient 

sampling points to ensure balanced class representation, and a suitable number of total images: 

developed medium intensity, developed high intensity, and perennial ice/snow. From the remaining 

11 classes 7 locations and associated images were randomly selected (stratified random sampling), 

resulting in 77 images shown partly in figure 2. To ensure that confluences were not on the 

boundary of two land cover classes, confluences were selected when located in a homogenous land 

cover region of at least 90 meters (3 NLCD pixels) in the direction the photo was taken.  Although 

land cover change has the possibility of influencing incorrect land cover extraction, each of the 77 

images were analyzed together with their corresponding land cover class to ensure consistency 

between land cover features in the images, and assigned land cover classes. It is important to note 

that Wickham et al. (2013) accuracy assessment of NLCD 2006 for the contiguous United States 

concludes that level I (8 aggregated land cover classes) accuracy is equal to 84% and level II 

accuracy is equal to 78%.  

 

 
 

Figure 1. The NLCD 2006 overlaid by confluence points (left). Stratified random sampled 

confluence points, 77 total sampled, 7 in each land cover class (right). 

 

3.1.2 Participants 

20 lay participants (non-experts, 5 female) were recruited through the crowdsourcing platform 

Amazon Mechanical Turk (AMT); average age 32.2 years; reimbursement: $1.25. 

 

 



3.1.3 Procedure 

The experimental software CatScan (Klippel et al. 2008) used for the experiment has been 

designed to be serviceable in combination with AMT (Figure 2). In the experiment, each 

participant performed a non-free classification task. During the non-free classification, all images 

were initially displayed on the left panel of the screen. On the right side of the screen, the 11 land 

cover classes were displayed into which participants were able to drag icons from the left panel 

into the classes on the right panel. It was possible to leave classes empty. 

 

 

 

Figure 2. Screenshot of the CatScan interface of an ongoing mock-up experiment. 

 

3.1.4 Results 

The classification results should be interpreted with consideration to Wickham’s (2013) accuracy 

assessment in mind. To reiterate, our sample from the NLCD was taken from the level II 

classification, which Wickham concludes is 78% accurate. There exists, however, accuracy 

variation among classes in the NLCD, and Wickham stresses the need for improved distinction 

among grass-dominated classes (develop, open space (dO), grassland (GS), pasture/hay (PH), 

cultivated crops (CC), and emergent herbaceous wetland (EW)), as they account for higher 

classification error relative to the other classes.  

Participants used an average of 10.25 classes (out of the possible 11) with a standard 

deviation of 1.07. The average grouping time was 665.86 seconds (11 minutes 5 seconds) with a 

standard deviation of 263.73 seconds (4 minutes 23 seconds).  

To analyze the classification results, we created a confusion matrix (Figure 3) that not only 

shows the number of correctly classified land cover images but additionally reveals how images 

were misclassified; the confusion matrix shows in which class an image was placed and whether 

or not this was the correct class. We performed chi square tests to corroborate the interpretation 

statistically. Several main observations can be summarized as follows. 

Overall classification accuracy for experiment 1 is approximately 40.19%. Against the 

relatively low overall accuracy of the classification task, the following land cover classes were 

significantly classified correctly more frequently than expected by having a standardized residual 

value greater than 1.96 (Table 1): developed, low intensity (dL), forest (FO), open water (OW). In 

contrast, the following land cover classes were significantly classified less correctly than expected 

by having a standardized residual value less than -1.96: emergent herbaceous wetlands (EW), 

pasture/hay (PH), woody wetlands (WW).  

 



Table 1. Standardized residuals for experiment 1  

 

 BA CC dL dO EW FO GS OW PH SS WW 

correct 1.57 -0.77 4.47 -1.13 -9.63 8.08 -1.31 13.14 -7.82 -0.77 -5.83 

 

As participants proceed through the experiment, CatScan records the land cover class that 

an image is placed in. Correct classification is assumed based on the land cover class the image is 

sampled from (see Figure 1). Organizing this data in form of confusion matrices allows for 

reviewing the classification behavior of all participants and assessing both correct and incorrect 

classifications. The confusion matrix below (Figure 3) shows the classification behavior in 

percentages; results can be summarized as follows: The Woody wetlands (WW) class is almost 

exclusively confused with forest (FO). Participants are generally successful in recognizing 

developed land cover but confuse developed, open space (dO) and developed, low intensity (dL), 

having more success classifying developed, low intensity (dL). Participants almost exclusively 

confuse barren (BA) and shrub/scrub (SS) with each other. The emergent herbaceous wetlands 

(EW), grassland (GS), and pasture/hay (PH) classes are confused across many classes. 

 

 

Figure 3. Confusion matrix for experiment 1 (lay participants with no intervention) showing 

percentages of correct (diagonal) and misclassified landscape images (rows). Misclassified 

classes between 5% and 25% are indicated by light pink, misclassifications between 25% and 

50% are light orange, and misclassifications above 50% are red. The ‘Total’ row indicates the 

percentage of classification choices made in each class.  

 

3.1.5 Discussion 

Comparing experiment 1 to Wickham’s (2013) analysis of the NLCD 2006 accuracy, both human 

classification, and NLCD classification have relative difficulty in classifying emergent herbaceous 

wetlands (EW) and pasture/hay (PH). From this we can speculate that both visual stimuli, and 



spectral characteristics of the land cover features in emergent herbaceous wetlands (EW) and 

pasture/hay (PH) are not well defined and cause confusion between classes.  

Using the woody wetlands (WW) class as an example, visually classifying certain land 

cover features cannot be done with relatively high levels of confidence, whereas spectrally it can. 

This could be a case of remote sensors’ ability to collect data outside the visual spectrum leading 

to clear distinctions between, say, forest and woody wetland via soil and vegetation moisture. 

Visually recognizing this distinction from DCP data proves to be very difficult for human 

classification (17% accuracy for WW).   

Although human classification and NLCD classification may start to have similar relative 

inaccuracies for developed, open space (dO), the confusion matrix shows humans being very 

successful in generally identifying developed. While remote sensors may have difficulty 

distinguishing spectral characteristics between developed features and natural features, this may 

not be as difficult a task for human classification. Developed features, although potentially 

spectrally similar to certain natural land cover features surrounding it, become easily identifiable 

for humans to visually interpret and distinguish from surrounding natural features. 

 

3.2 Experiment 2 - Lay people, intervention 
 

Intrigued by the findings of experiment 1, especially by the overall low number of correctly 

classified images, we designed an intervention described in Section 3.2.3. The goal of this 

intervention was to reduce confusion between land cover classes and increase classification 

accuracy.  

 

3.2.1 Materials  

Same as experiment 1. 

 

3.2.2 Participants 

20 new lay participants (non-experts, 11 female) were recruited through AMT; average age 34.2 

years; reimbursement: $1.25.  

 

3.2.3 Procedure 

The main procedural difference between experiment 1 and experiment 2 was the inclusion of the 

NLCD land cover class definitions as defined on the Multi-Resolution Land Characteristics 

Consortium website (http://www.mrlc.gov), and associating prototypical images for each land 

cover class with the definition (Figure 4). The images were sourced from the DCP, and were 

assigned to each definition based off of their associating extracted NLCD class. These definitions 

and prototypical images were shown to the participants before they began the experiment and were 

available to revisit throughout the entire experiment.   

 

3.2.4 Results 

Participants used an average of 10.65 classes (out of the possible 11) with a standard deviation of 

0.59. The average grouping time was 822.01 seconds (13 minutes 42 seconds) with a standard 

deviation of 326 seconds (5 minutes 26 seconds).  

The overall accuracy is 44.35%. The improvement in classification by lay participants after 

the intervention is statistically significant (χ2 = 5.2807, df = 1, p = .02), with developed, open space 

(dO) specifically benefiting from the intervention, increasing its accuracy 22.15%  



 

Figure 4. An example of what the lay people see before and during the experiment.  

 

from experiment 1. This relatively high accuracy of developed, open space (dO) contrasts with the 

confusion between grass-dominated classes in NLCD that Wickham (2013) notes is relatively 

inaccurate. 

Against the relatively low overall accuracy of the classification task, the following land 

cover classes were significantly classified correctly more frequently than expected by having a 

standardized residual value greater than 1.96 (Table 2): developed, open space (dO), forest (FO), 

open water (OW). In contrast, the following land cover classes were significantly classified less 

correctly than expected by having a standardized residual value less than -1.96: emergent 

herbaceous wetlands (EW), pasture/hay (PH), woody wetlands (WW).  

 

Table 2. Standardized residuals for experiment 2  

 

 BA CC dL dO EW FO GS OW PH SS WW 

correct -0.55 -0.01 0.87 3.37 -8.75 8.72 -0.72 12.29 -8.22 0.34 -7.33 

 

When examining the confusion matrix below (Figure 5) in comparison to the confusion 

matrix for experiment 1 (Figure 3), general relationships between classes persist but changes occur 

in magnitudes of accuracy. As in experiment 1, experiment 2 also results in almost exclusive 

confusion of woody wetland (WW) being misclassified as forest (FO), barren (BA) and 

shrub/scrub (SS) being confused with each other, the developed classes being confused with each 

other, and the emergent herbaceous wetlands (EW), grassland (GS), and pasture/hay (PH) 

confused across many classes. Differences between the experiments were as follow: Participants 

classified developed, open space (dO) more accurately than developed, low intensity (dL) in 

experiment 2, compared to participants classifying developed, low intensity (dL) more accurately 

than developed, open space (dO) in experiment 1. Participants confused barren (BA) with 

shrub/scrub (SS) more often, and confused shrub/scrub (SS) with barren (BA) less often in 

experiment 2, compared to experiment 1.  

 



3.2.5 Discussion 

Referring to the grass dominated classes that Wickham (2013) notes are the cause for most 

confusion in NLCD 2006, while all grass dominated classes increase in varying degrees of 

accuracy from experiment 1 to experiment 2, developed, open space (dO) by far benefits the most 

from the intervention, increasing 22.15%. The inclusion of the intervention changes developed, 

open space (dO) from a cause of confusion in experiment 1, similar to NLCD relative confusion, 

to a class that is relatively accurate. We can speculate then that even though developed, open space 

(dO) may need more distinction to decrease confusion for NLCD, human classification of this 

class is relatively accurate when provided land cover class definitions. This further would indicate 

that the land cover class definition for developed, open space (dO) creates more clarity, whereas 

the land cover class definition for developed, low intensity (dL) introduces more confusion.  

 

 

Figure 5. Confusion matrix for experiment 2 (lay participants with intervention). 

 

 Participants confused shrub/scrub (SS) with barren (BA) less, but confused barren (BA) 

as shrub/scrub (SS) more. This indicates that the intervention convinced participants that 

shrub/scrub (SS) includes more land cover possibilities than perhaps initially thought, while the 

intervention narrowed the possibilities of what might be considered barren (BA). 

 

3.3 Experiment 3 - Experts 
 

Given the potential for errors based on the accuracy of the level II NLCD data (78%) we also 

investigated how experts would classify the images we sampled. 

 

3.3.1 Materials 

Experts were provided the class definitions and visual prototypes of each land cover class, just like 

in experiment 2, but on printed out sheets of paper.  

 



3.3.2 Participants 

Four experts were solicited that have ecological and geographic information science backgrounds 

with experience in working with land cover data.  

 

3.3.3 Procedure 

Each expert viewed the original DCP images on a computer screen, one at a time. As previously 

mentioned in the materials section, they were each given a printed out copy of the class definitions 

and visual prototypes of each land cover class. Each expert viewed the original DCP images on a 

computer screen one at a time, and recorded their classification choice on a sheet of paper.   

 

3.3.4 Results 

The classifications by each expert were compared against those from each other expert in order to 

establish levels of agreement between experts. We represent agreement as Cohen’s kappa 

coefficient (Figure 6) and percent agreement (Figure 7). Cohen’s kappa coefficient is a measure 

of inter-rater agreement for categorical objects. It expands on general percentage agreement and 

takes into account the likelihood of random agreement. The coefficient is defined by the following 

equation:  

𝜅 =
𝜌𝑜−𝜌𝑐

1−𝜌𝑐
 (13.1) 

Where 𝜌𝑜 is the observed proportion of agreement and 𝜌𝑐  is the proportion of agreement expected 

by chance. If the raters are in perfect agreement then 𝜅 = 1. If the raters agreement is what would 

be expected by chance then 𝜅 = 0. Foody (2013b) uses this coefficient as an index of the level of 

inter-rater agreement in an experiment of classifying presence of forest (forest, or non-forest) given 

DCP images.  

 

 

Figure 6. Cohen’s Kappa coefficient values between the experts, A-D.  

 

 

Figure 7. Percent agreement between the experts, A-D. Full agreement indicates the percentage 

that all 4 experts agreed on the same classification given a DCP image. 

 



The overall accuracy is 48.37%. There is no statistically significant difference between 

educated lay participants (experiment 2) and experts (χ2 = 1.52, df = 1, p = .22). The most notable 

change from experiment 2 to experiment 3 is the increase of cultivated crop (CC) accuracy 

(23.57%). 

Against the relatively low overall accuracy of the classification task, the following land 

cover classes were significantly classified correctly more frequently than expected by having a 

standardized residual value greater than 1.96 (Table 3): cultivated crops (CC), developed, low 

intensity (dL), forest (FO), open water (OW). In contrast, the following land cover classes were 

significantly classified less correctly than expected by having a standardized residual value less 

than -1.96: barren (BA), emergent herbaceous wetlands (EW), grassland (GS), woody wetlands 

(WW).  

Table 3. Standardized residuals for experiment 3 

 

 BA CC dL dO EW FO GS OW PH SS WW 

correct -3.78 2.16 3.35 -0.21 -3.38 3.35 -2.99 5.73 -0.21 1.37 -5.37 

 

Referencing Wickham’s (2013) analysis of NLCD accuracy, we see experts performed 

relatively well where NLCD, experiment 1, and experiment 2 did not, in classifying cultivated 

crops (CC). Conversely, the experts match the NLCD and are relatively inaccurate in other grass 

dominated classes such as emergent herbaceous wetlands (EW) and grassland (GS).  

When examining the confusion matrix below (Figure 8), the following relationships 

between classes found in experiment 1 and 2 persist in experiment 3: woody wetlands (WW) is 

almost exclusively confused as forest (FO), the confusion of barren (BA) as shrub/scrub (SS) 

continues to increase, the developed classes are confused between each other, and the emergent 

herbaceous wetlands (EW), grassland (GS), and pasture/hay (PH) confused across many classes. 

Differences between experiment 3 and the previous experiments are as follows: Experts were more 

successful in classifying developed, low intensity (dL) than developed, open space (dO), which is 

more similar to experiment 1, and had little confusion when classifying developed, low intensity 

(dL). Although accuracy for open water (OW) was high in the previous two experiments, experts 

were perfect in correctly classifying, and not confusing another class as open water (OW). Experts 

significantly classified cultivated crops (CC) correctly more frequently than expected, which was 

not accomplished in the previous experiments. Experts significantly classified barren (BA) and 

grassland (GS) less correctly than expected which was not accomplished in the previous 

experiments.   

 

3.3.5 Discussion 

Referring to the grass dominated classes that Wickham (2013) notes are the cause for most 

confusion in NLCD 2006, experts are relatively successful in classifying cultivated crops (CC), 

and relatively poor at classifying grassland (GS). The cultivated crops (CC) success differs from 

NLCD, experiment 1, and experiment 2’s relative successes. This could indicate that experts are 

uniquely capable in recognizing anthropogenically induced patterns relating to crop fields that lay 

participants are unable to visually recognize, and remote sensors are unable to spectrally identify. 

Conversely, experts are unsuccessful in recognizing grassland (GS), almost equally confusing the 

class with 4 other classes. While the previous 2 experiments struggled with grassland (GS), this  

 



 

Figure 8. Confusion matrix for experiment 3 (experts). 

 

indicates that experts uniquely conceptualize grassland (GS) as a broader class that includes many 

other land covers that previous experiments do not consider. 

 The experts’ success in recognizing developed, low intensity (dL) could indicate their 

ability to successfully recognize anthropogenic influences in land cover as also shown in the 

accuracy of cultivated crops (CC), and their overall ability to recognize developed classes. This is 

further indicated by confusion of cultivated crops (CC) mostly with pasture/hay (PH) which is 

another class that has some degree of anthropogenic influence by definition.   

 

4. Conclusions / Outlook 
 

The overall match between participants’ classifications and NLCD is rather low (40.19 - 48.37%). 

Accuracy increased statistically significantly using an intervention of providing definitions and 

prototypical images as examples as mentioned previously. The misclassifications are not random 

but rather systematic. This is the case on the level of land cover classes as well as on the level of 

individual images.  

Classification accuracy naturally increases the more land cover classes are aggregated. The 

Anderson Level 1 classification groups pasture/hay (PH) and cultivated crops (CC) as a single 

land cover class, all of the developed classes as a single land cover class, and woody wetlands 

(WW) and emergent herbaceous wetlands (EW) as a single land cover class. Even though other 

research that analyzes the quality of human classification of land cover (Perger et al. 2012, See et 

al. 2013) gives the human participants a similar amount of land cover classes to choose from (10 

classes compared to our 11), accuracy results are either presented after some level of aggregation 

to account for potential confusion between similar land cover classes (Perger et al. 2012), or some 

land cover classes’ accuracy results omitted (See et al. 2013). When using humans to classify land 

cover, the level of aggregation in class representation becomes a heavily influencing factor. As 



seen in the results above, humans are much more accurate in discerning specific land cover classes, 

and naturally more accurate overall when distinguishing between fewer land cover classes. 

See et al. (2013) shows results of shrub cover, grassland, and mosaiced cropland as having 

the lowest accuracies. They thus argue that there is a need to provide more examples of how classes 

that are often confused are represented specifically within Google Earth. When comparing 

experiment 3 (experts) results to the land cover classes that were most often confused in See’s 

study (most specifically shrub cover and mosaiced cropland), human classification accuracy is 

relatively high in our experiment for those land cover classes when using on the ground 

photographs. This perhaps indicates the necessity for more contextual information when 

classifying particular land cover classes, such as shrub and crop type land cover.  

When assigning complex tasks to be performed by the crowd, one must ensure that the 

volunteered data quality is appropriate and sustainable. In the context of land cover validation, 

humans are very successful in correctly classifying certain land cover via on the ground 

photographs, and poor in classifying others. Lessons learned from these three experiments are 

currently integrated in additional experiments that will, among other things, provide additional 

information about the area to be classified in form of aerial images, ask participants to perform 

classifications along individual dimensions, and allow for an indication of uncertainty of 

classifications. 
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